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Introduction 

The linking of remote sensing and social science has been a topic of research interest for over 
two decades. It has made many strides as more and more researchers in a number of disciplines 
have started to work together. One of the areas where the link is just recently starting to grow is 
poverty mapping. Ending poverty in all its forms everywhere is UN Sustainable Development 
goal number one. One of the fundamental requirements for ending poverty, is knowing where it 
is. Poverty mapping is traditionally performed by either using household survey data or by 
combining these surveys with census data collected by national statistics offices. This is a time 
consuming, labor intensive, and costly process that limits the ability to collect data in many 
areas, with many countries never even collecting the data (Serajuddin et al. 2015). Furthermore, 
the definition of poverty, the measurements used to calculate it, and the definition of poor 
persons has a variety of characterizations in development economics (Steele et al. 2017, 
Chambers 2006, Alkire and Foster 2011).  Poverty estimates can be based on monetary metrics 
such as consumption estimates, or on asset based such as material possessions. Using these 
different metrics to define poverty can lead to quite different rankings of the same population 
(Steele et al. 2017).  

Despite the best efforts of national statistics offices and the international development 
community, local area estimates of poverty and economic welfare remain rare. Between 2002 
and 2011, as many as 57 countries failed to conduct more than a single survey capable of 
producing poverty statistics, and data are scarcest in the poorest countries (Serajuddin et al., 
2015). Even in countries where data are collected regularly, household surveys are typically too 
small to produce reliable estimates below the district level. Generating welfare estimates for 
smaller areas require both a household welfare survey and contemporaneous census data, and the 
latter is typically available once per decade at best. Furthermore, safety concerns may prohibit 
survey data collection in many unstable areas altogether. 

In order to fill these gaps, satellite imagery has generated considerable enthusiasm as a potential 
supplement. The big draw of satellite data is the global coverage available and the timeliness of 
the continually updating of the data sets. Satellite data can not measure poverty directly as it can 
only measure the outside of the structures and indicators of development. The most commonly 
used method in Economics has been to use Night Time Lights (NTL) imagery to map variations 
in poverty (Henderson et al., 2012, Pinkovskiy and Sala-I-Martin, 2016). The NTL approach 
works for well for describing large area variations in poverty (i.e., country and continental 
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scales) and has proven useful for comparing poverty between countries. The assumption behind 
the NTL approach is that areas with greater wealth have higher NTL light emissions and poorer 
areas have less light emissions. While this approach explains some of the large area variations in 
poverty, it does not allow for understanding variability at local spatial scales because of the 
course spatial resolution (1km) of the NTL satellite data. Additionally, this approach is limited in 
urban areas, as at the within city scale because these areas tend to be relatively bright the NTL 
observations have relatively little variation as they can reach saturation.  

In order to overcome these limitations a recent focus on the use of very high spatial resolution 
imagery (VHSRI) (spatial resolution less than 5m) has garnered significant attention. In recent 
years, private companies such as DigitalGlobe and Airbus have rapidly expanded the coverage 
and availability of VHSRI. Another relative new company, Planet (formerly Planetlabs), 
currently operates more satellites than any organization other than the US and Russian 
governments, and just recently, successfully launched 88 dove satellites that will allow for 
coverage of the entire globe with imagery with a 3 to 5 m spatial resolution on a daily basis. 
While all of these data are available, the costs of purchasing is still prohibitive for academic 
researchers and only limited studies have taken place. However, with advances in the technology 
and the drop in the costs of this type imagery, it should allow social scientists to benefit from this 
data source in the coming decades. 

 

Poverty Mapping with Very High Spatial Resolution Imagery  

Poverty mapping within urban areas using VHSRI imagery, has generally focused on mapping 
slum versus non-slum areas or informal versus formal housing (Kuffer et al. 2016, Kohli et al. 
2016, Taubenbock and Kraff  2014, Kohli et al. 2013, Engstrom et al. 2015).  The assumption of 
this research is that the spatial pattern of buildings, roads and dwelling units allows the ability to 
differentiate slum from non-slum areas. A number of different approaches have been tested to 
map slums including simple visual interpretation, object oriented, machine learning based on 
spectral and spatial features, and others (Kuffer et al. 2016, Kohli et al. 2016, Taubenbock and 
Kraff  2014, Kohli et al. 2013, Engstrom et al. 2015). While the spatial pattern of the scene 
model helps to understand what a slum might look like in some contexts, simply visually 
interpreting slum versus non-slum areas can be difficult due to varying local definitions of slums 
(Kohli et al. 2016) as well  as differing morphologies of slums in different locales (Sliuzus et al. 
2008). This has made developing automated methods for mapping slum areas and the 
transferability of these methods a challenging task.  

A major hurdle for using VHSRI data for working over larger areas is processing the imagery in 
an efficient and appropriate manner at scale. Jean et al. (2016) used VHSRI data to map poverty 
across multiple sub-Saharan African countries at the village level. Their research utilized a 
convolutional neural network (CNN) approach. CNNs require an enormous amount of training 
data (Tajbakhsh et al. 2016), so they used a multi-step approach called “transfer learning”. Their 
transfer learning approach tuned an existing CNN to extract features, which summarize the 
relationship between NTL intensities and VHSRI data. The properties of the VHSRI imagery 
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that correlated well with NTL were then used to train ridge regression models to predict 
household expenditures and assets at a village scale.  Their results indicate that they were able to 
explain up to 55% of variation in average consumption and 75% of variation in average asset 
wealth. While this provides one methodology for mapping poverty over space, the 
interpretability, amount and type of training data needed for this approach, and repeatability of 
these results are not that promising as CNNs are difficult to interpret and the relationships 
between imagery derived values and poverty are somewhat vague. 

In previous research we have been testing a new methods for processing VHSRI using spatial 
and spectral features (Engstrom et al. 2015, Engstrom et al. 2016, Engstrom et al. 2017). In the 
spatial features approach, instead of mapping objects (buildings, roads, cars etc.) or using a 
CNN, we characterize the spatial variability in the imagery. Previous research has indicated 
spectral and spatial features extracted from high resolution imagery are related to potential 
indicators of poverty, such as informal housing, housing quality, population density, slums, lack 
of solid waste collection, and lack of improved sanitation at the city scale (Graesser et al. 2012, 
Sandborn and Engstrom 2016, Engstrom et al. 2015).  

Extracting these spatial features is an image processing technique, 
which derives information related to spatial pattern, structure, 
orientation, texture, and irregularity from windows of image pixels 
(Herold et al. 2003). Spatial feature outputs rely on pixel groups, 
and therefore each spatial feature must be calculated with a specific 
block and scale size combination for a “neighborhood” (Fig. 1).  In 
figure 1, A represents the individual pixel, B the block size, which 
becomes the output resolution of the spatial feature, and C is the 
scale size, also referred to as window size, which represents how 
many pixels the spatial feature calculation will use to compute the 
output at the block scale. By using these parameters, a pixel in the 
output spatial feature layer will represent the relationship between 
neighborhoods of buildings, roads, vegetation, and other values thus indicating the spatial form 
of each neighborhood. This block and scale approach allows us to process the imagery in an 
efficient manner. Additionally, it gathers all of the information from the finest scale (i.e., the 
pixel) and aggregates it to larger spatial scales, thus reducing the processing time and file sizes.  
By doing this we can efficiently characterize variations in the landscape over large areas.  

The spatial features we have been examining come from computer vision and have been used in 
facial recognition software and other applications. Features are: Histogram of oriented gradients 
(HoG), which captures edge orientations and sorts them into a histogram (Dalal et al. 2005), 
PanTex, which is a built-up presence index derived from the grey-level co-occurrence matrix 
(GLCM) (Pesaresi et al. 2008), Line support regions (LSR), which characterize line attributes 
(Yu et al. 1999), Local binary  pattern moments (LBPM), which define contiguous regions of 
pixel groups and sorts them into a histogram (Wang and He, 1990), Fourier transform (FT) 
which examines pattern frequency across an image (Smith 1997), Gabor, a linear Gaussian filter 
used for edge detection (Gabor, 1946), Speeded Up Robust Features (SURF), an algorithm that 

Fig. 1.  (A) An individual pixel, (B) 
Block size of 4x4 pixels, and (C) scale 
size of 8x8 pixels. 
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extracts key points (i.e., edges and corners) from an image through pyramidal Gaussian based 
decomposition (Bay et al., 2006), the Normalized Difference Vegetation Index (NDVI), the most 
widely used vegetation index that provides information about the presence and abundance of 
vegetation (Tucker, 1979), and the mean of the combined spectral bands, and the means of the 
four individual bands, Blue, Green, and Near Infrared. Together these features characterize 
information related to the structure and morphology of an area. That spatial and spectral features 
are related to indicators of poverty is relatively intuitive, as urban morphology and structure are 
related to socioeconomic conditions (Taubenbock et al. 2009) spatial and spectral features 
statistical characterize these.  

We have found that they are strong indicators of not only variables related to poverty, such as 
informal housing, housing quality, population density, slums, lack of solid waste collection, and 
lack of improved sanitation (Graesser et al. 2012, Sandborn and Engstrom 2016, Engstrom et al. 
2015) but also poverty measures themselves at the city scale (Engstrom et al. 2017). 
Additionally, when they are added to other remote sensing derived data sets, they can help 
explain poverty over large parts of countries explaining greater than 60% of the variance in 
poverty (Engstrom et al. 2017 and Engstrom et al. in Review). This indicates that we may be able 
to scale these types of analyses to much larger spatial areas.  

 

Concluding Remarks  

Combining the uncertainty in poverty values, with the lack of census and survey information for 
many countries, and the issues with obtaining satellite data, makes the mapping of poverty with 
satellite data a very rich field for research and exploration. While satellite data can not directly 
measure poverty, the ability to characterize either the lights from settlements or the infrastructure 
and spatial patterns of the landscape appears to be a good proxy for explaining the spatial 
patterns of poverty. NTL has proven to be successful over large areas while information 
extracted from VHRSI appear to work at finer spatial scales and may be scalable to large areas. 
Next steps include determining how to scale these appropriately, testing the ability of combing 
VHSRI and cell phone record data (i.e., Steele et al. 2017), and other ways of extracting 
information from the data. Finally, the ability to detect changes in poverty through time is only 
just beginning to be a possibility as there is an increase in the amount of both satellite imagery 
and georeferenced survey and census data available to test this.  
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